Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Cyanidiophyceae red algae dominate many geothermal habitats and provide important tools for investigating the evolution of extremophilic eukaryotes and associated microbial communities. We propose that resource sharing drove genome reduction in Cyanidiophyceae and enabled the neofunctionalization of genes in multi-enzyme pathways. Utilizing arsenic detoxification as a model, we discuss how the sharing of gene functions by other members of the microbial assemblage weakened selection on homologs in the Cyanidiophyceae, allowing long-term gene persistence via the putative gain of novel functions. This hypothesis, referred to as the Integrated Horizontal Gene Transfer (HGT) Model (IHM), attempts more generally to explain how extremophilic eukaryotes may have transitioned from 'hot start' milieus by functional innovations driven by the duplication and divergence of HGT-derived genes.more » « lessFree, publicly-accessible full text available June 20, 2026
-
The photosynthetic symbionts of corals sustain biodiverse reefs in nutrient-poor, tropical waters. Recent genomic data illuminate the evolution of coral symbionts under genome size constraints and suggest that retention of the facultative lifestyle, widespread among these algae, confers a selective advantage when compared with a strict symbiotic existence. We posit that the coral symbiosis is analogous to a 'bioreactor' that selects winner genotypes and allows them to rise to high numbers in a sheltered habitat prior to release by the coral host. Our observations lead to a novel hypothesis, the 'stepping-stone model', which predicts that local adaptation under both the symbiotic and free-living stages, in a stepwise fashion, accelerates coral alga diversity and the origin of endemic strains and species.more » « less
-
Lemon, Katherine P (Ed.)ABSTRACT Iron (Fe) is a trace nutrient required by nearly all organisms. As a result of the demand for Fe and the toxicity of non-chelated cytosolic ionic Fe, regulatory systems have evolved to tightly balance Fe acquisition and usage while limiting overload. In most bacteria, including the mammalian pathogenStaphylococcus aureus, the ferric uptake regulator (Fur) is the primary transcriptional regulator controlling the transcription of genes that code for Fe uptake and utilization proteins. Fpa (formerly YlaN) was demonstrated to be essential inBacillus subtilisunless excess Fe is added to the growth medium, suggesting a role in Fe homeostasis. Here, we demonstrate that Fpa is essential inS. aureusupon Fe deprivation. Nullfuralleles bypassed the essentiality of Fpa. The absence of Fpa abolished the derepression of Fur-regulated genes during Fe limitation. Bioinformatic analyses suggest thatfpawas recruited to Gram-positive bacteria and, once acquired, was maintained in the genome as it co-evolved with Fur. Consistent with a role for Fpa in alleviating Fur-dependent repression, Fpa and Fur interactedin vivo, and Fpa decreased the DNA-binding ability of Furin vitro. Fpa bound Fe(II)in vitrousing oxygen or nitrogen ligands with an association constant that is consistent with a physiological role in Fe homeostasis. These findings have led to a model wherein Fpa is an Fe(II) binding protein that influences Fur-dependent regulation through direct interaction.IMPORTANCEIron (Fe) is an essential nutrient for nearly all organisms. If Fe homeostasis is not maintained, Fe may accumulate in the cytosol, which can be toxic. Questions remain about how cells efficiently balance Fe uptake and usage to prevent overload. Iron uptake and proper metalation of proteins are essential processes in the mammalian bacterial pathogenStaphylococcus aureus. Understanding the gene products involved in the genetic regulation of Fe uptake and usage and the physiological adaptations thatS. aureususes to survive in Fe-depleted conditions provides insight into pathogenesis. Herein, we demonstrate that the DNA-binding activity of the ferric uptake regulator transcriptional repressor is alleviated under Fe limitation, but uniquely, inS. aureus, alleviation requires the presence of Fpa.more » « lessFree, publicly-accessible full text available November 13, 2025
-
The integration of multiple ‘omics’ datasets is a promising avenue for answering many important and challenging questions in biology, particularly those relating to complex ecological systems. Whereas, multi-omics was developed using data from model organisms with significant prior knowledge and resources, its application to non-model organisms, such as coral holobionts, is less clear-cut. We explore, in the emerging rice coral model Montipora capitata, the intersection of holobiont transcriptomic, proteomic, metabolomic, and microbiome amplicon data and investigate how well they correlate under high temperature treatment. Using a typical thermal stress regime, we show that transcriptomic and proteomic data broadly capture the stress response of the coral, whereas the metabolome and microbiome datasets show patterns that likely reflect stochastic and homeostatic processes associated with each sample. These results provide a framework for interpreting multi-omics data generated from non-model systems, particularly those with complex biotic interactions among microbial partners.more » « less
-
Lavrov, Dennis (Ed.)Abstract Standing genetic variation is a major driver of fitness and resilience and therefore of fundamental importance for threatened species such as stony corals. We analyzed RNA-seq data generated from 132 Montipora capitata and 119 Pocillopora acuta coral colonies collected from Kāneʻohe Bay, Oʻahu, Hawaiʻi. Our goals were to determine the extent of colony genetic variation and to study reproductive strategies in these two sympatric species. Surprisingly, we found that 63% of the P. acuta colonies were triploid, with putative independent origins of the different triploid clades. These corals have spread primarily via asexual reproduction and are descended from a small number of genotypes, whose diploid ancestor invaded the bay. In contrast, all M. capitata colonies are diploid and outbreeding, with almost all colonies genetically distinct. Only two cases of asexual reproduction, likely via fragmentation, were identified in this species. We report two distinct strategies in sympatric coral species that inhabit the largest sheltered body of water in the main Hawaiian Islands. These data highlight divergence in reproductive behavior and genome biology, both of which contribute to coral resilience and persistence.more » « less
-
Abstract Dinoflagellates from the family Symbiodiniaceae are phototrophic marine protists that engage in symbiosis with diverse hosts. Their large and distinct genomes are characterized by pervasive gene duplication and large-scale retroposition events. However, little is known about the role and scale of horizontal gene transfer (HGT) in the evolution of this algal family. In other dinoflagellates, high levels of HGTs have been observed, linked to major genomic transitions, such as the appearance of a viral-acquired nucleoprotein that originated via HGT from a large DNA algal virus. Previous work showed that Symbiodiniaceae from different hosts are actively infected by viral groups, such as giant DNA viruses and ssRNA viruses, that may play an important role in coral health. Latent viral infections may also occur, whereby viruses could persist in the cytoplasm or integrate into the host genome as a provirus. This hypothesis received experimental support; however, the cellular localization of putative latent viruses and their taxonomic affiliation are still unknown. In addition, despite the finding of viral sequences in some genomes of Symbiodiniaceae, viral origin, taxonomic breadth, and metabolic potential have not been explored. To address these questions, we searched for putative viral-derived proteins in thirteen Symbiodiniaceae genomes. We found fifty-nine candidate viral-derived HGTs that gave rise to twelve phylogenies across ten genomes. We also describe the taxonomic affiliation of these virus-related sequences, their structure, and their genomic context. These results lead us to propose a model to explain the origin and fate of Symbiodiniaceae viral acquisitions.more » « less
-
Primary endosymbiosis allowed the evolution of complex life on Earth. In this process, a prokaryote was engulfed and retained in the cytoplasm of another microbe, where it developed into a new organelle (mitochondria and plastids). During organelle evolution, genes from the endosymbiont are transferred to the host nuclear genome, where they must become active despite differences in the genetic nature of the “partner” organisms. Here, we show that in the amoebaPaulinella micropora, which harbors a nascent photosynthetic organelle, the “copy-paste” mechanism of retrotransposition allowed domestication of endosymbiont-derived genes in the host nuclear genome. This duplication mechanism is widespread in eukaryotes and may be a major facilitator for host–endosymbiont integration and the evolution of organelles.more » « less
-
Abstract Coral bleaching, precipitated by the expulsion of the algal symbionts that provide colonies with fixed carbon is a global threat to reef survival. To protect corals from anthropogenic stress, portable tools are needed to detect and diagnose stress syndromes and assess population health prior to extensive bleaching. Here, medical grade Urinalysis strips, used to detect an array of disease markers in humans, were tested on the lab stressed Hawaiian coral species,Montipora capitata(stress resistant) andPocillopora acuta(stress sensitive), as well as samples from nature that also includedPorites compressa. Of the 10 diagnostic reagent tests on these strips, two appear most applicable to corals: ketone and leukocytes. The test strip results fromM. capitatawere explored using existing transcriptomic data from the same samples and provided evidence of the stress syndromes detected by the strips. We designed a 3D printed smartphone holder and image processing software for field analysis of test strips (TestStripDX) and devised a simple strategy to generate color scores for corals (reflecting extent of bleaching) using a smartphone camera (CoralDX). Our approaches provide field deployable methods, that can be improved in the future (e.g., coral-specific stress test strips) to assess reef health using inexpensive tools and freely available software.more » « less
-
Abstract Background Dinoflagellates in the family Symbiodiniaceae are important photosynthetic symbionts in cnidarians (such as corals) and other coral reef organisms. Breakdown of the coral-dinoflagellate symbiosis due to environmental stress (i.e. coral bleaching) can lead to coral death and the potential collapse of reef ecosystems. However, evolution of Symbiodiniaceae genomes, and its implications for the coral, is little understood. Genome sequences of Symbiodiniaceae remain scarce due in part to their large genome sizes (1–5 Gbp) and idiosyncratic genome features. Results Here, we present de novo genome assemblies of seven members of the genus Symbiodinium , of which two are free-living, one is an opportunistic symbiont, and the remainder are mutualistic symbionts. Integrating other available data, we compare 15 dinoflagellate genomes revealing high sequence and structural divergence. Divergence among some Symbiodinium isolates is comparable to that among distinct genera of Symbiodiniaceae. We also recovered hundreds of gene families specific to each lineage, many of which encode unknown functions. An in-depth comparison between the genomes of the symbiotic Symbiodinium tridacnidorum (isolated from a coral) and the free-living Symbiodinium natans reveals a greater prevalence of transposable elements, genetic duplication, structural rearrangements, and pseudogenisation in the symbiotic species. Conclusions Our results underscore the potential impact of lifestyle on lineage-specific gene-function innovation, genome divergence, and the diversification of Symbiodinium and Symbiodiniaceae. The divergent features we report, and their putative causes, may also apply to other microbial eukaryotes that have undergone symbiotic phases in their evolutionary history.more » « less
An official website of the United States government
